受试者工作特征曲线在评价血流动力学参数监测机体容量状况时的诊断价值

蔡勤芳,刘晓梅,赵海涛,刘永勤

[摘要] 目的 探讨利用受试者工作特征(receiver operating characteristic, ROC)曲线评价不同血流动力学参数监测机体容量状况时的诊断价值。 方法 30例美国麻醉协会Ⅰ~Ⅱ级拟在全麻下行胃肠手术的患者,麻醉诱导后连续监测平均动脉压(mean arterial pressure, MAP)、心率(heart rate, HR)、中心静脉压.central venous pressure, CVP)、每搏量变异度(stroke volume variation, SVV)等血流动力学参数,以0.4 ml/(kg·min)的速率静脉输注6%羟乙基淀粉130/0.4氯化钠注射液进行容量治疗,总输注量为7ml/kg。记录输注羟乙基淀粉即刻和输注结束后3min时MAP、HR、CVP、CI、SVV值,计算CI变化的百分比即ΔCI, ΔCI≥15%视为对容量治疗有反应,绘制各参数容量治疗前的ROC曲线并分析其在监测机体容量状况中的诊断意义。 结果 Pearson相关性分析显示:SVV的基础值与 ΔCI 有显著的线性相关(r = 0.629, P<0.01)。各血流动力学参数ROC曲线下面积分别为MAP 0.479, HR 0.699, CVP 0.361, CI 0.455, SVV 0.920, SVV的ROC曲线下面积与其他血流动力学参数比较有统计学意义(P<0.01);当潮气量为8 ml/kg,以 ΔCI ≥15% 定义对容量治疗有无反应的标准时,SVV最佳诊断阈值为10.5%,监测容量反应的灵敏度为93.8%,特异性为77.8%。 结论 SVV是评估机体容量状况的良好指标,其诊断性优于MAP, HR, CVP, CI。[关键词] 受试者工作特征曲线;血流动力学;容量;监测

Diagnostic efficacy of receiver operating characteristic curve analysis in predicting fluid responsiveness in mechanically ventilated patients under general anaesthesia

CAI Qin-fang, LIU Xiao-mei, ZHAO Hai-tao, LIU Yong-qin

(Department of Anesthesiology, Navy General Hospital, Beijing 100048, China)

[Abstract] Objective To evaluate the diagnostic efficacy of receiver operating characteristic curve analysis in predicting fluid responsiveness in mechanically ventilated patients under general anesthesia. Methods Thirty patients were enclosed in this study. Following anesthesia induction, all patients were monitored with Vigileo/FloTrac system. Haemodynamic data cardiac index (CI), mean arterial pressure (MAP), heart rate (HR), stroke volume variation (SVV) and central venous pressure (CVP) were recorded immediately and after volume expansion (VE) (Hetastar 6%, 7 ml/kg). Fluid responsiveness was defined as an increase in CI ≥15% (ΔCI ≥15%). Results There was a significant relationship between SVV before volume expansion and change in CI after volume expansion (r = 0.629, P<0.01). The AUC of Haemodynamic data was MAP 0.479, HR 0.699, CVP 0.361, CI 0.455 and SVV 0.920. The AUC of SVV was statistically different (P<0.01). A SVV threshold of 10.5% before volume expansion was able to discriminate the responders from the non-responders with a sensitivity of 93.8% and a specificity of 77.8%. Conclusion SVV, one of the dynamic indices, can predict fluid responsiveness in mechanically ventilated patients under general anesthesia. The diagnostic efficacy of SVV is better than CI, MAP, HR and CVP.

[Key words] Receiver operating characteristic curves; Haemodynamic; Monitoring; Vascular capacitance
利用动态或静态血流动力学参数对机体容量状况进行及时评估，在指导围术期液体维持、改善患者预后、缩短患者的住院天数等方面都具有重要意义[1]，而这些参数在评估机体容量状况时的灵敏度和特异性取决于其诊断阈值的选定。本文旨在探讨应用受试者工作特征(receiver operating characteristic, ROC)曲线对血流动力学参数进行分析，判断其监测机体容量状况的准确性并确定其最佳诊断阈值。

1 资料与方法

1.1 临床资料

30例美国麻醉协会(American Society of Anesthesiologists, ASA) I～ II级拟在全麻下行胃肠手术的患者，其中男性21例、女性9例，年龄18~72(48±10)岁。病例排除标准:术前血红蛋白<110g/L、有心律失常、心内分流、外周血管疾病及长期口服血管活性药物的患者。所有患者术前1d均口服MgSO4 50ml进行肠道准备。

1.2 方法

1.2.1 麻醉方法 麻醉前30min肌内注射阿托品0.5mg，入室后开放外周静脉通路，按4ml/(kg·h)的速率输注平衡液，飞利浦监护仪(Intellivue MP70, Philips Medical System, Suresnes, France)常规监测心电图(electrocardiogram, ECG)、心率(heart rate, HR)、血压(blood pressure, BP)、脉搏血氧饱和度(pulse oxygen saturation, SpO2)及呼气未二氧化碳(end-tidal carbon dioxide, ETCO2)，并连接脑电双频指数(bispectral index, BIS)监测(Aspect XP, Aspect Medical Systems, Natick, MA)。麻醉诱导:咪唑唑仑0.05mg/kg、丙泊酚1~1.5mg/kg、芬太尼2~4μg/kg、罗库溴铵0.6~0.8mg/kg静脉快速诱导行气管内插管，间歇性正压换气(intermittent positive-pressure ventilation, IPPV)控制通气，容量控制模式。呼吸参数:潮气量8ml/kg，呼吸频率10~14/min，维持ETCO2在30~35 mmHg范围内，吸入氧分数(fraction of inspiration oxygen, FiO2)2 L/min。麻醉维持:靶控输注丙泊酚，维持BIS值在40~60之间。行左或右桡动脉穿刺置管，接 FloTracTM传感器，传感器一端连接普通监护仪监测有创平均动脉压(mean arterial pressure, MAP)，另一端接 VIGELO 监测仪。运动、心率、中心静脉压及心脏指数等各项指标。上述各项操作完毕，血流动力学平稳后5min，以0.4 ml/(kg·min)的速率静脉输注6%羟乙基淀粉130/0.4氯化钠注射液，输注总量为7ml/kg，进行容量治疗反应的临床观察。

1.2.2 观察指标 输注羟乙基淀粉即刻和输注结束后3min记录MAP, HR, CVP, CI, SVV, 计算CI变化的百分比即ΔCI, ΔCI=[(输注羟乙基淀粉结束后CI值-输注羟乙基淀粉即刻CI值)/输注羟乙基淀粉即刻CI值]×100%。

1.3 统计学处理 采用SPSS 13.0统计学软件分析数据，MAP, HR, CVP, CI, SVV与ΔCI进行Pearson相关性分析，并绘制血流动力学参数的ROC曲线，以诊断指数(灵敏度+特异性)最大处的检测值确立为诊断阈值。

P<0.05为差异有统计学意义。

2 结果

2.1 Pearson相关性分析 分析显示SVV的基础值与ΔCI有显著的线性相关(r=0.629, P<0.01)。

2.2 绘制ROC曲线 各参数ROC曲线下面积(area under curve, AUC)分别为MAP 0.479, HR 0.699, CVP 0.361, CI 0.455, SVV 0.920, SVV的ROC曲线下面积与其他血流动力学参数比较差异有统计学意义(P<0.01)。潮气量为8ml/kg，以ΔCI≥15%定义对容量治疗有无反应的标准时，SVV最佳诊断阈值为10.5%，监测容量反应的灵敏度为93.8%，特异性为77.8%。ROC曲线下面积显示，SVV监测容量反应的准确性高于HR, MAP, CVP和CI(图1)。

3 讨论

在过去的很多年，临床医师通常以MAP, HR, CVP等静态血流动力学参数来判断机体的容量状况并指导容量治疗。但近来研究表明，依赖于胸内压和回心血量之间相互作用的动态血流动力学指标
SVV、动脉脉压变异等与机体容量治疗反应的相关性更高[3-7]。本试验结果显示，SVV 的基础值与ΔCI有良好的相关性（r = 0.629, P < 0.01），其评估机体容量治疗反应的灵敏度、特异性优于其他血流动力学参数，是诊断机体容量状况的良好指标。在实际工作中，ROC 曲线除了可进行检验项目之间临床准确性比较，还可得到决定区分正常与异常的分离点的重要信息，具有全面和直观的优点，且有利于不同指标间的诊断性能比较，从而筛选更佳的诊断试验[8]。本试验应用 ROC 曲线进一步对比分析各血流动力学参数预测机体容量状况的诊断性能，通过计算 ROC AUC 来评价诊断效率。AUC 通常用作确定某一诊断方法准确性评价的指标，一般认为 AUC < 0.5 为无诊断价值，0.5~0.7 为诊断准确性较低，0.7~0.9 为诊断准确性较高，>0.9 表示诊断准确性高。常以 ROC 曲线上方靠近左上方 Youden 指数最大的切点为阈值[9]。本试验结果 MAP、CVP、CI 的 AUC 均低于 0.5，HR 的 AUC 在 (0.5~0.7)，具有较低的准确性，SVV 的 AUC > 0.9，其准确性最高。

本试验 ROC 曲线分析得出当潮气量为 8 ml/kg 时，ΔCI ≥ 15% 定义对容量治疗有无反应的标准，SVV 最佳诊断阈值为 10.5%，监测容量反应的灵敏度为 93.8%，特异性为 77.8%。该结果提示在本试验条件下，SVV ≥ 10.5%，说明容量治疗效果不佳，应继续补液治疗。

需要指出的是，在不同的研究和试验条件下，SVV 的诊断阈值可能会在一定范围内波动，这可能与患者左室充盈状态的大小，进行容量治疗时输注液体的种类、数量以及判定是否对容量治疗有反应的标准不同有关[10-11]。在实际工作中，应根据试验的具体条件设置，确定检测项目的临床诊断界值，以避免造成误诊。同时，应尽可能选择敏感性高、准确度好的试验方法，使阳性似然比较大，准确性似然比较小，并以此作为最佳诊断试验和最合适的临床决策的选择原则，只有这样，才真正符合循证医学检验的要求。

综上所述，ROC 曲线在评估血流动力学参数监测机体的容量状况以及对容量治疗的反应时，具有很好的诊断价值，值得进一步推广使用。

【参考文献】

（收稿日期：2012-12-23 本文编辑：徐海琴）